Exam. Code : 103206
 Subject Code : 1217

B.A./B.Sc. 6th Semester
 MATHEMATICS (Dynamics)

PAPER-I

Time Allowed-3 Hours]
[Maximum Marks-50
Note :- Attempt any 5 questions in all choosing at least two from each section. All questions carry equal marks.

SECTION-A

1. (a) What are the gravitational units of force in CGS and MKS system ?
(b) State Newton's law of motion.
(c) Let F be a force acting on a body of mass m, prove that $F=m a$, where a is the acceleration. 2,3,5
2. Two masses, m_{1} and $m_{2}\left(m_{1}>m_{2}\right)$ are suspended by a light inextensible and flexible string over a smooth, fixed, small and light pulley. Find the tension in the string. Further show that the tension in the string is the H.M. between the weights of the two bodies. 10
3. A body sliding down a smooth inclined plane is observed to cover equal distances, each equal to l, in consecutive intervals of time t_{t} and t_{2}. Show that inclination of the plane is $\sin ^{-1}\left[\frac{2 l\left(t_{1}-t_{2}\right)}{\mathrm{gt}_{1} \mathrm{t}_{2}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)}\right]$.

2793(2517)/STB-14628
4. A particle moves in a straight line, starting from rest from a distance c to a centre of attraction towards which the force per unit mass is $\frac{\mu}{x^{3}}$, where x is measured from the centre. Show that the time required to reach the centre is $\frac{c^{2}}{\sqrt{\mu}}$.
5. A particle moves with S.H.M. in a straight line. In the first second after starting from the rest it travels a distance a and in the next second, it travels a distance b. Prove that the amplitude of the motion is $\frac{2 a^{2}}{3 a-b}$.

SECTION-B

6. A particle is projected with velocity $2 \sqrt{\mathrm{ag}}$ so that it just clears two walls of equal heights ' a ' which are at a distance 2a from each other. Show that the latus-rectum of the path is $2 a$ and that the time of passing between the walls is $2 \sqrt{\frac{a}{g}}$.
7. A particle is projected along the inside of the arc of a smooth vertical circle from any point in it with velocity ν_{1}. Prove that the velocity v_{2} of the particle, after it has moved through a height h is given by.

$$
\begin{equation*}
v_{2}^{2}=v_{1}^{2}-2 \mathrm{gh} \tag{10}
\end{equation*}
$$

8. (a) Define power. What are the units of power in F.P.S. and M.K.S. system? What is the relation between F.P.S. and M.K.S. units of power?
(b) A cycle being driven at $14 \mathrm{~km} / \mathrm{hr}$ is bought to rest in 6 meters by using brakes. Find the work done by the resistance (assumed constant) if the weight of the cycle is 18 kg .

5,5
9. Differentiate between kinetic energy and potential energy. Show that the kinetic energy of a particle of mass m moving with a magnitude of velocity v is $\frac{1}{2} \mathrm{mv}^{2}$.
10. Apply the principle of conservation of energy to find the magnitude of the velocity of a projectile at a height h above the point of projection, the velocity of projection being u.

10

